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Abstract 
 
Metamodels have been widely used in engineering design to replace the high-fidelity simulations which lead to high 

computation costs. The accuracy of a metamodel is strongly affected by the sampling strategies. Most strategies use the 
Kriging as a metamodel since it provides information on the prediction error. In this paper, a new sequential sampling 
approach is proposed, which is capable of employing many other metamodels: it is not restricted within Kriging. It 
selects additional points by two ways according to the number of sampling points. The capabilities of the proposed 
approach have been demonstrated by test problems with various features.  
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1. Introduction 

Although the computational power has been dra-
matically improved in over the past decades, iterative 
design optimizations or reliability-based design op-
timizations (RBDO) often have computational limita-
tions. This is because considerable computational 
time is still necessary for complex nonlinear simula-
tion analysis, such as the collision analysis and the 
flow field analysis. To overcome such practical limi-
tations, various researches on utilizing the metamod-
els [1] to approximate the complex and computation-
ally expensive simulation models [2-4] are in pro-
gress. 

The accuracy of a metamodel depends highly on 
the metamodeling technique and the characteristics of 
the original function, which is directly related to the 
sampling approach. Koehler and Owen [5] provided a 
good review on various computer-based experiments. 

Typically, the sample points are generated all at once, 
or in other words, at one-stage. On the contrary, the 
sequential sampling approach generates sample points 
one after another according to the particular criteria 
instead of generating all points at once. In sequential 
sampling technique, the new sampling points and 
corresponding responses are sequentially updated. 
Therefore, the sequential sampling approach has sig-
nificant advantages. For example, it can use the pre-
viously generated information of the metamodel, and 
the sampling process can be stopped as soon as there 
is sufficient information [6]. Namely, sequential sam-
pling is the technique developed for both improving 
the efficiency of a design of experiments (DOE) and 
the accuracy of metamodels.  

The study presented in this paper focuses on inves-
tigation into the sequential sampling for global meta-
modeling in order to improve the accuracy of a 
metamodel over the entire design space of interest. 
There are several sequential sampling techniques: 
maximin distance approach that maximizes the mini-
mum distance between the existing sample points [7], 
Entropy approach that sequentially adds sample 
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points, which maximizes the entropy [8], mean square 
error (MSE) approach that uses prediction error of 
Kriging model [6], sensitivity approach that adds 
sample points sequentially at the peak points of the 
metamodel [9] and the cross-validation approach that 
adds sample points at the location where the cross-
validation error is maximized [10].  

In the metamodel application, the MSE method and 
the integration mean square error (IMSE) approach 
are the most widely used methods among the existing 
sequential sampling methods, which are limited to 
Kriging. Researches on sequential sampling methods, 
which are not restricted by metamodeling techniques, 
are still under study. Among them, a representative 
one is the cross-validation approach that does not 
require additional sampling points [10]. 

This paper proposes a sequential sampling method, 
which is applicable to any metamodel and is able to 
improve the accuracy of the resulting metamodel with 
the existing cross-validation approach. The proposed 
approach is applied to various mathematical problems 
and the accuracy of the approach is evaluated by 
comparing it to other sampling methods. 

 
2. Sequential sampling approaches for global 

metamodeling 

2.1 Metamodeling techniques 

2.1.1 Kriging 
A Kriging model [6] represents the information ob-

tained from the numerical experiments as a summa-
tion of a global model and local deviation, given by 
Eq. (1): 

 
( ) ( ) ( )y Z= +x f x β x                 (1) 

                
where, Z(x) is a normal distribution with a mean of 0 
and a variance of σ2. The deviation for each sampling 
point has correlation defined by Eq. (2): 
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where, N and ndv are the number of sampling points 
and the number of design variables, respectively. xi,k 
is the value of the k th design variable at the i th sam-
pling point. R(xi, xj) is a function that represents the 
correlation between two sampling points, xi and xj. 

Typically, R(xi, xj) is defined as a Gaussian correla-
tion function. In Eq. (2), the unknown correlation 
coefficient θk can be found by the global optimization 
using the maximum likelihood estimation (MLE) 
method. 

The Kriging technique is very flexible in capturing 
nonlinear behaviors of the model because the correla-
tion functions can be statistically tuned by the sample 
data. Another good feature of Kriging is its ability to 
provide an estimation of the prediction error, which is 
the essence of several sequential approaches. How-
ever, since the calculation of the correlation requires 
the global optimization, it consumes significant com-
putational power and time for problems with many 
design variables and sampling points. Another short-
coming of this technique is that it may fail to generate 
the proper metamodel if the global optimization can-
not be successfully accomplished. 

 
2.1.2 Radial Basis Function (RBF) 
RBF [11, 12] is often used to perform the interpola-

tion of scattered multivariate data. The metamodel 
appears as a linear combination of Euclidean dis-
tances and weights, given by Eq. (3). 

 

1

ˆ( ) ( , )
N

i i i
i

y wϕ
=

= ∑x x x                    (3) 

 
where, N is the number of sampling points, wi is the 
weight determined by least-squares method and    
φi(x, xi) is the i th basis function determined at the 
sampling point xi. Various symmetric radial functions 
used as the basis function are listed in Table 1.  

The RBF method is known to be a good interpola-
tion method like the Kriging. Furthermore, it is faster 
and more convenient than the Kriging to generate. 
However, RBF is deficient in that the appearance of a 
metamodel varies significantly with the type of the 
basis function and its internal parameters [13]. In 
addition, this method does not provide a statistical  

 
Table 1. Commonly used radial basis functions. 
 

Name 
Radial Function 

2
x-x ir =  

Linear φ(r)=cr 

Cubic φ(r)=(r+c)3  

Thin plate spline φ(r)=r2log(cr2)  

Gaussian φ(r)=exp(-cr2) 

Multiquadratic φ(r)=(r2+c2)1/2 
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prediction error as the Kriging technique [10] does. In 
this paper, a linear basis function is used with the 
fixed parameter, c=1. 

 
2.2 Existing sequential sampling methods 

2.2.1 Entropy approach 
This approach defines entropy, a measure of the 

disorder in the universe, using a determinant of the 
correlation function representing the correlation be-
tween sampling points, and then maximizes the de-
fined entropy [8]. The approach uses the Kriging 
model based on the Bayesian theory and an existing 
sample set XP(xP1, xP2,…, xPl), and selects a new sam-
ple set XC(xC1, xC2,…, xCm) with the maximum 
amount of information.   

 
1max

C

T
A A

−×
X

R J R J                 (4) 

 
where, |RA| is the determinant of the correlation func-
tion for XA= XC ∪ XP, a sample set which consists of 
l existing sample points and m new sample points, 
and J is a vector (JT={1,…,1}1ⅹ(l+m)) which consists 
of (l+m) elements of 1. The correlation coefficients θk 

(k=1,…,ndv) in RA are the same as the ones in the cor-
relation function of Kriging model given by Eq. (2). 

 
2.2.2 MSE approach 
This approach is designed to improve the accuracy 

of a metamodel by adding only one sampling point at 
the location where the greatest error is expected to 
happen. The error measure is defined as the mean 
square error (MSE) which is a statistical prediction 
error from the Kriging model. The mathematical 
statement of this approach is given by Eqs. (5) and (6). 
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where, 
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This approach is a special case of the entropy ap-

proach, and it is identical to the entropy approach 
when it picks only one sampling point at each itera-
tion [10]. 

2.2.3 IMSE approach 
Introduced by Sacks, this approach selects a new 

sample set XC that provides the least integrated mean 
square error (IMSE) by using the Kriging metamodel 
and an existing sample set XP [6].  
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where, 
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In the case of picking only one new sample point, the 
difference between the IMSE approach and the MSE 
approach is that the IMSE approach applies the aver-
age MSE to the entire design space. Furthermore, the 
MSE approach uses only the existing sample set XP to 
compose the MSE, while the IMSE uses both XC and 
XP. 
 

2.2.4 Maximin distance approach 
In the case of adding m new sample sets XC to l ex-

isting samples sets XP, the maximin distance ap-
proach selects a new sample set that maximizes the 
minimum distance between two sampling points in 
XA= XC∪ XP [7]. 

 

( )( )
1 ,1

,max min
Ci Aj

C

Ci Aj
i m j l m

d
≠

≤ ≤ ≤ ≤ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

x x

x
x x                 (9) 

 
This approach uses only location information of the 
existing sample points to select the new sample points, 
which leads to a shortcoming of not being able to 
account for the response of the model.  

 
2.2.5 Cross-validation approach 
The MSE and IMSE approach are restricted within 

the Kriging model. And, the entropy and maximin 
distance approach cannot account for the response 
characteristics of the model (i.e., use only location 
information of sample points). The cross-validation 
approach, however, is one of the sequential sampling 
methods that has no restriction on using metamodel-
ing techniques and accounting for the response char-
acteristics of the model. The cross-validation ap-
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proach validates the accuracy of a metamodel by 
constructing a metamodel while sequentially elimi-
nating one or more existing sample points and then 
comparing the difference of the response of the me-
tamodel over the entire existing sample points. This 
approach has a great advantage in that it does not 
require extra sampling points to measure the accuracy 
of the metamodel.  

The prediction error can be calculated by Eq. (10) 
using the leave one-out cross-validation, the most 
widely used cross-validation approach which can 
generate a metamodel over a sample point set with 
one sample point excluded.  

 

( ) ( ) ( )( )2

1

1 ˆ ˆ
N

i
i

e y y
N −

=

= −∑x x x            (10) 

 
Where, N is the total number of sampling points, ŷ(x) 
is the response of the metamodel which is generated 
over the entire existing sample set XP. ŷ-i(x) is the 
response of the metamodel which is generated over a 
set of sample points with the i th sample point ex-
cluded out of N sample points. The method selects a 
new sample point x with the greatest prediction error 
calculated by Eq. (10).  

However, the sequential sampling based on Eq. 
(10) has a tendency that the new sampling point is 
very close to the existing sampling point xPi, ending 
up with crowded new sample points near existing 
sample points. To prevent such a phenomenon from 
happening, Jin [10] modified Eq. (10) and suggested a 
method that can account for the distance between the 
new and existing sample points, and the modified Eq. 
is given by Eq. (11). 

 

( )( )max ( ) min ,
C

C C Pii
e d⎡ ⎤∗⎢ ⎥⎣ ⎦x

x x x             (11) 

 
3. Construction of the radial basis function 

based on a sequential sampling approach 
using the cross-validation method 

3.1 Defects of the existing cross-validation approach 

A problem of Jin’s cross-validation approach arises 
when the first metamodel (which is generated by 
using one-stage sampling approach) is not sufficiently 
accurate. If one calculates the prediction error with 
the response of the metamodel, which is constructed 
using insufficient sample points, Eq. (11) will lead the 
new sample point to a wrong location. Therefore, the 

sample points are probably wasted due to being 
placed in the wrong location. As a result, the resulting 
metamodel may have a lower accuracy rate even 
when the metamodel is generated by a one-stage ap-
proach which selects all sample points at once. Thus, 
the sequential sampling method accounting for the 
response characteristics of a metamodel only can be 
used when the metamodel possesses appropriate ac-
curacy.  

 
3.2 Proposed sequential sampling approach 

The defects of Jin’s approach can be overcome by 
modifying Eq. (11), resulting in an improved ap-
proach defined by the Eq. (12).  
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 (12) 
 

The reason for dividing the prediction error term by 
max[e(xtest)] is to normalize the prediction error to 
make its maximum and minimum as 1 and 0, respec-
tively. For the same reason, the term representing the 
distance between points is normalized by being di-

vided by ( )1 min
2 Pi Pji j≠

× x ,x . Since the two terms are 

normalized, the method is not sensitive to these scales 
Thus, a logical and efficient sequential sampling 

approach can be proposed: first, assign 0 to the 
weight w1 of the prediction error term for the inaccu-
rate metamodels so that the maximin distance ap-
proach is used alone, and then increase the weight of 
the prediction error for metamodels that appear to be 
sufficiently accurate.  

The algorithm of the proposed approach is ex-
plained below: 

 
• Step 1: Set k, the number of iterations, to 1. Then, 

set w1 (the weight of prediction error term) to 0, 
w2 (the weight of minimum distance term) to 1. 
Use the Latin hypercube sampling method to 
generate the initial sample set XP, and perform an 
analysis over XP. 

• Step 2: Use Eq. (10) to calculate the cross-
validation error at the test points, and then find 
the greatest prediction error. Find the shortest 
distance between the existing sampling points xPi 
and xPj (i≠j). 
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End

 
 
Fig. 1. Algorithm of the proposed approach. 

 
• Step 3: Use the greatest prediction error and the 

shortest distance between the existing sampling 
points XP found in Step 2 to establish Eq. (12), 
and then use global optimization to select a new 
sample point xC.  

• Step 4: If the number of iterations k reaches the 
designer-specified value, then stop the process; 
otherwise proceed to the next step. 

• Step 5: Perform analysis at xC and set k=k+1. 
Update the existing sample set XP by adding the 
new sample point xC to XP. 

• Step 6: Assign weights w1 and w2 based on the 
accuracy of the metamodel, and go back to Step 2.  
 

The relative absolute error (RAE) value is identi-
fied as a measure of accuracy for the metamodels, and 
the error between the metamodels generated from the 
two successive iterations can be calculated by Eq. 
(13): 
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where, Ntest is the total number of sample points, ŷk is 
the metamodel constructed at the k th iteration. When  
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B

A

 
 
Fig. 2. Algorithm of the proposed approach. 

 
RAEk resides within a range of ‘sufficient value’, a 
large value is assigned to the weight w1 of the predic-
tion error term that uses the response of the meta-
model.  

Here, because RAE is the accuracy measure which 
uses the information of the metamodel only, it shows 
instable tendency. To see these characteristics, RAE 
was compared with RMSE (which uses the informa-
tion of actual model) according to the change of the 
number of sample points (from 8 to 50). Fig. 3 and 
Table 2 show the test functions used in this study. The 
maximin distance approach as a sequential sampling 
approach and the radial basis function based on the 
linear basis function as a metamodeling technique are 
used in these cases.  

Fig. 4 to Fig. 7 depict the results of RAE and RMSE 
calculated for each function with respect to the num-
ber of sample points. It can be observed from the 
trend of the RAE that the error converges to 0 as itera-
tion repeats, while it has peaks different from the 
uniform convergence of RMSE. 

To make the algorithm be robust and insensitive to 
the peak values, it accounts for both RAEk and RAEk-1 
not only RAEk. Namely, it increases the weight of the 
prediction error terms only when the RAE is less than 
a ‘sufficient value’ after two consecutive iterations. 
Where, the ‘sufficient value’ is defined as an infini-
tesimal positive number with the size of 1»ε1> ε2> ε3> 
0. In addition, if the conditions of RAEk-1<ε1 and 
RAEk<ε1 are satisfied, w1 is defined as w1(ε1). 
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Table 2. Test function. 
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Fig. 3. Test function. 

 
 

 
 
Fig. 4. RMSE & RAE of Branin function. 

 
 
Fig. 5. RMSE & RAE of Waving function. 

 

 
 
Fig. 6. RMSE & RAE of Waving-linear function. 

 

 
 
Fig. 7. RMSE & RAE of Goldstein and price function. 

 
3.3 Determination of the parameters 

In the proposed approach, there are parameters that 
need to be specified by a designer and they are ε1, ε2, 
ε3, w1(ε1), w2(ε1), w1(ε2), w2(ε2), w1(ε3), w2(ε3). In other 
words, the designer has to determine how small the 
RAE should be for efficiently defining an accurate 
metamodel, and how the weights should be assigned 
for the terms in Eq. (11). If the summation of w1 and 
w2 is known as 1, the parameters needed to be deter-
mined will be ε1, ε2, ε3, w1(ε1), w1(ε2), w1(ε3). 

Fig. 4 to Fig. 7 depict that, generally, the RAE is 
less than 0.002 for the cases that converge in a very 
stable manner. In addition, the RAE never exceeds 
0.035 for any case. Based on these findings, after 
several trial-and-errors are performed, the parameters 
are determined and listed in Table 3:  
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Table 3. The best parameters based on the trial & errors. 
 

 ε w1 w2 
Initial  0 1 

1st criterion 0.019 0.2 0.8 
2nd criterion 0.07 0.5 0.5 
3rd criterion 0.001 0.8 0.2 

 

4. Test problems 

4.1 Problem definition 

To compare and analyze the accuracy of the meta-
model created by using the proposed sequential sam-
pling approach, four of the two-variable mathematical 
function problems shown in Fig. 3 and Table 2 that 
Jin [10] used are chosen as proof of implementation 
in this study. The functions used in the test are all 
strong non-linear functions: (a)Branin function, 
(b)Waving function, (c)Waving-linear function and 
(d)Goldstein and Price function. 

 
4.2 Test scheme 

In this study, the same test scheme as the one pre-
sented in [10] is used: the number of the initial and 
the final sample points are 8 and 24, respectively, for 
all 2-variable problems. Instead of using the entropy 
criterion in the optimal Latin hypercube sampling 
(OLHS) [14] method, the maximin distance criterion 
is used in this study to generate the initial sample 
points. When generating sample points by using 
OLHS, there exists randomness. Because the accu-
racy of a metamodel is very sensitive to the sample 
points, in order to eliminate the effect of randomly 
used sample points existing in the initial sample 
points, 10 repeat tests using the average value are 
conducted.  

To compare the accuracy of the metamodels, addi-
tional 800 test points generated by the MCS method 
are utilized. As a measure of accuracy, the root mean 
squared error (RMSE) is used to evaluate the predic-
tion performance of the global functions, given by Eq. 
(14).  

 

( )2

, ,
1

ˆ( ) ( )
testN

test i test i
i

test

y y
RMSE

N
=

−
=

∑ x x
    (14) 

 
where, Ntest is the number of test points, y is the re-

sponse of an actual function and ŷ is the response of a  

 
 
Fig. 8. RMSE history of Branin function. 
 
 

 
 
Fig. 9. RMSE history of Waving function. 

 

 
 
Fig. 10. RMSE history of Waving-linear function. 
 
metamodel.  

To evaluate the proposed sequential sampling ap-
proach, the results obtained from the ‘one-stage’ 
method using the OLHS technique at the final sample 
points and the results obtained from the existing se-
quential sampling approach [10] are compared to the 
results from proposed method. 

 
4.3 Result of the test 

Fig. 8 to Fig. 11 depict the RMSE of each function 
for the proposed approach in this work. Table 4 
shows a comparison of the accuracy of the metamod-
els in terms of the RMSE over 24 sample points, 
which is the final metamodel in this test scheme. 
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Table 4. Comparison of the RMSE of the final metamodel. 
 

 
 

 
 
Fig. 11. RMSE history of Goldstein and price function. 

 
The results reveal that the proposed approach in 

this study can improve the accuracy of a metamodel 
by 6.81% to 31.63%, that is, 19.05% on average, as 
compared to the existing cross validation approach. 
Compared to the “one-stage” approach in terms of the 
RMSE, although the proposed approach shows – 
1.30% worse in accuracy for the Waving function, it 
improves the accuracy by 0.04% to 66.46%, a 
17.55% in average, for the other functions. The pro-
posed approach and the “one-stage” approach have 
similar accuracy for the Waving function and Wav-
ing-linear function that have strong nonlinearity over 
the entire design space. However, for the Goldstein 
and Price function that has locally strong nonlinearity, 
the proposed approach exhibits abrupt dramatic im-
provement of 66.46% in accuracy.  

 
5. Conclusions and future works 

This study proposed a sequential sampling ap-
proach that can overcome the defects of the existing 
cross-validation approach. The capabilities of the 
approach were demonstrated by various mathematical 
testing problems. Their results revealed that the pro-
posed approach improved the accuracy by 19.05% 
and 17.55% on average over the existing “cross-
validation” approach and “one-stage” approach, re-
spectively. Although it can be concluded that the 
proposed approach constructs a more accurate meta-
model than the existing cross-validation approach, it 
is not prudent to claim that this proposed approach is 

better than the “one-stage” approach since three out 
of four test problems did not show significant im-
provement in accuracy when compared to the “one-
stage” approach.  

The accuracy of the metamodel is not the only 
measure which is used to compare the sequential 
sampling approach and the “one-stage” approach. If 
the two approaches have the same accuracy for a 
specified problem, the sequential sampling approach 
would still be the better choice because in the sequen-
tial sampling approach the changes in accuracy can be 
seen, which will highly facilitate the determination of 
the termination criteria for the problem under consid-
eration. The existing cross-validation approach gener-
ally has a lower accuracy rate than the “one-stage” 
approach, which is often a reason why designers hesi-
tate to use it as the preferred sampling approach. 
However, it is clear that the proposed approach is the 
better choice over the “one-stage” approach because it 
shows similar or higher accuracy and provides a trend 
of changes in accuracy of a metamodel.  

Considering the approach was applied to only four 
two-variable problems, follow-on research should be 
conducted when implementing the proposed approach 
to more various problems. In addition, the research on 
the parameters that the designers need to specify is 
another area to study in depth. Finally, in this study, 
although the proposed sequential sampling method 
focuses on the global metamodeling, the research on 
the sequential sampling method for the Sequential 
Approximate Optimization (SAO) is needed. 
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